Error analysis of signal zeros from a related companion matrix eigenvalue problem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix representation of a sixth order Sturm-Liouville problem and related inverse problem with finite spectrum

‎In this paper‎, ‎we find matrix representation of a class of sixth order Sturm-Liouville problem (SLP) with separated‎, ‎self-adjoint boundary conditions and we show that such SLP have finite spectrum‎. ‎Also for a given matrix eigenvalue problem $HX=lambda VX$‎, ‎where $H$ is a block tridiagonal matrix and $V$ is a block diagonal matrix‎, ‎we find a sixth order boundary value problem of Atkin...

متن کامل

Fast Computation of the Zeros of a Polynomial via Factorization of the Companion Matrix

A new fast algorithm for computing the zeros of a polynomial in O(n2) time using O(n) memory is developed. The eigenvalues of the Frobenius companion matrix are computed by applying a nonunitary analogue of Francis’s implicitly shifted QR algorithm to a factored form of the matrix. The algorithm achieves high speed and low memory use by preserving the factored form. It also provides a residual ...

متن کامل

Finding the Zeros of a Univariate Equation: Proxy Rootfinders, Chebyshev Interpolation, and the Companion Matrix

When a function f(x) is holomorphic on an interval x ∈ [a, b], its roots on the interval can be computed by the following three-step procedure. First, approximate f(x) on [a, b] by a polynomial fN (x) using adaptive Chebyshev interpolation. Second, form the Chebyshev– Frobenius companion matrix whose elements are trivial functions of the Chebyshev coefficients of the interpolant fN (x). Third, ...

متن کامل

The eigenvalue problem of a specially updated matrix

We study the eigenvalue problem for a specially structured rank-k updated matrix, based on the Sherman–Morrison– Woodbury formula. 2006 Elsevier Inc. All rights reserved.

متن کامل

A Posteriori Error Estimates for the Steklov Eigenvalue Problem

In this paper we introduce and analyze an a posteriori error estimator for the linear finite element approximations of the Steklov eigenvalue problem. We define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove that, up to higher order terms, the estimator is equivalent to the energy norm of the error. Finally, we prove that the vo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2001

ISSN: 0893-9659

DOI: 10.1016/s0893-9659(01)00056-8